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Série 5b Solutions 

  Exercise 5b.1 – Power shaft 

The electric motor in Figure 5b.1 exerts a torque of 800 N∙m at point A on the steel shaft ABCD 

when it is rotating at a constant speed. The point D of the shaft is free to rotate. Design specifications 

require that the diameter of the shaft be uniform from A to D and that the angle of twist between A and 

D not exceed 1.5°. Knowing that 𝜏𝑚𝑎𝑥 ≤ 60 MPa and 𝐺 = 77 GPa.  

 

Determine the minimum diameter shaft that can be used. 

Hint: Consider both maximum stress and maximum twist criterion for this analysis. 

 

 

Figure 5b.1 | Power shaft system description.  

 

Solution – 5b.1 

What is Given: 

Motor torque: -800 N·m (*value is negative to offset the torques from B and C) 

τmax ≤ 60 MPa 

Maximum twist angle: 1.5° 

G = 77 GPa 

 

Find Minimum diameter shaft that can be used: In order to find the minimum radius for the power 

shaft we will consider both the given twist and stress criterion and then select the smallest allowed 

diameter. 

 

Relevant Methods/Equations: 

Maximum torsion equation 

τmax =
𝑇𝑐

𝐼𝑝

 (5b.1.1)  

800 N.m  

x 
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Twist angle equation 

𝜙 =
𝑇𝐿

𝐺𝐼𝑝

 (5b.1.2)  

Polar area moment of inertia for a cylinder 

𝐼𝑝 =
𝜋𝑟4

2
 (5b.1.3)  

Find torques for each segment of the shaft:  

We use the equilibrium equation on the whole system to find the Torque in A, with 𝑇𝐴 = −800 N · m 

We use the equilibrium equation, Σ𝑀𝑧 = 0,  and the method of sections to find the different torque for  

𝑇𝐶𝐷 + 𝑇𝐷 = 0 with TD = 0 we find 𝑇𝐶𝐷 = 0 (5b.1.4) 

𝑇𝐴𝐵 +  𝑇𝐴 = 0 with 𝑇𝐴 = −800 N · m we find 𝑇𝐴𝐵 = 800 N · m (5b.1.5) 

𝑇𝐵𝐶 +  𝑇𝐵 +  𝑇𝐴 = 0 with 𝑇𝐵 =  300 N · m and 𝑇𝐴 = −800 𝑤e find 𝑇𝐵𝐶  = 500 N · m  (5b.1.6) 

Design based on stress: 

𝜏𝑚𝑎𝑥 =
𝑇𝑐

𝐼𝑝
=

2𝑇

𝜋𝑟3
 (5b.1.7) 

𝑟 = √
2𝑇

𝜋τmax

3

= √
2 ∙ 800

𝜋(60 · 106)

3

= 20.4 · 10−3 m (5b.1.8) 

 

Design based on deformation: 

𝜙𝑚𝑎𝑥  =  1.5° =  26.18 ∙ 10−3 rad 

𝜙𝐷/𝐶 = 0 (5b.1.9) 

𝜙𝐶/𝐵 =
𝑇𝐵𝐶𝐿𝐵𝐶

𝐺𝐼𝑝
=

(500 ∗ 0.6)

𝐺𝐼𝑝
=

300

𝐺𝐼𝑝
 (5b.1.10) 

𝜙𝐵/𝐴 =
𝑇𝐴𝐵𝐿𝐴𝐵

𝐺𝐼𝑝
=

(800 ∗ 0.4)

𝐺𝐼𝑝
=

320

𝐺𝐼𝑝
 (5b.1.11) 

𝜙𝐷/𝐴 = 𝜙𝐷/𝐶 + 𝜙𝐶/𝐵 + 𝜙𝐵/𝐴 =
620

𝐺 (
𝜋
2) 𝑟4

=
2 ∗ 620

𝜋 ∗ 𝐺 ∗ 𝑟4
 (5b.1.12) 

𝑟 = √
(2)(620)

𝜋𝐺𝜙𝑚𝑎𝑥

4

= √
(2)(620)

𝜋(77 ∙ 109)(26.18 ∙ 10−3)

4

= 21.04 ∙ 10−3 m (5b.1.13) 

 

With the deformation criterion requiring the largest radius we can conclude that minimum allowable 

diameter is 42.1 mm. 
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Exercise 5b.2 – Non-cylindrical bars  

Shafts A and B in Figure 5b.2 are made of the same material and have the same cross-sectional 

area, but A has a circular cross section and B has a square cross section. Assume both deformations to 

be elastic. 

a) Determine the ratio of the maximum torques, TA and TB, that can be safely applied to A 

and B, respectively.  

b) Determine the ratio of the maximum values of the angles, 𝝓𝑨 and 𝝓𝑩, through which 

shafts A and B, respectively, may be twisted. 

Hint: For a square member, 𝐶1 = 0.208 and 𝐶2 = 0.1406 

 

 

Figure 5b.2 | Bars with the same cross-sectional area with (A) Circular and (B) Square cross-sections. 

 

Solution – 5b.2 

Let r = Radius of circular section A, and b = Side Length of square section B 

So                                                                                   𝐴𝑟𝑒𝑎𝐴 = 𝜋𝑟2 

𝐴𝑟𝑒𝑎𝐵 = 𝑏2 

For equal areas: 

𝜋𝑟2 = 𝑏2 
(5b.2.1) 

𝑟 =
𝑏

√𝜋
 

(5b.2.2) 

a) Determine the ratio of the maximum torques, TA and TB  

For circular section A: 

𝜏𝐴 =
𝑇𝐴𝑟

𝐼𝑃

=
2𝑇𝐴

𝜋𝑟3
 

(5b.2.3) 

𝑇𝐴 = (
𝜋

2
) 𝑟3𝜏𝐴 

(5b.2.4) 
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For Square section B: 

𝐶1 = 0.208 
(5b.2.5) 

𝜏𝐵 =
𝑇𝐵

𝐶1𝑎𝑏2
=

𝑇𝐵

𝐶1𝑏3
 

(5b.2.6) 

𝑇𝐵 = 𝜏𝐵𝐶1𝑏3 
(5b.2.7) 

The ratio would then be: 

𝑇𝐴

𝑇𝐵

=
(

𝜋
2

) 𝑟3𝜏𝐴

𝜏𝐵𝐶1𝑏3
=

(
𝜋
2

) (
𝑏

√𝜋
)

3

𝜏𝐴

𝜏𝐵𝐶1𝑏3
=

1

2𝐶1√𝜋
(

𝜏𝐴

𝜏𝐵

) (5b.2.8) 

If the stresses are the same, 𝜏𝐴 =  𝜏𝐵 then: 

𝑇𝐴

𝑇𝐵

=
1

2𝐶1√𝜋
(

𝜏𝐴

𝜏𝐵

) =
1

2𝐶1√𝜋
 ≈ 1.356 

(5b.2.9) 

b) Determine the ratio of the maximum values of the angles, 𝝓𝑨 and 𝝓𝑩  

For the Circular Section A: 

𝛾𝑀𝐴𝑋 =
𝜏𝐴

𝐺
=

𝑟𝜙𝐴

𝐿
 (5b.2.10) 

𝜙𝐴 =
𝐿𝜏𝐴

𝑟𝐺
 (5b.2.11) 

For Square Section B: 

𝜏𝐵 =
𝑇𝐵

𝐶1𝑏3
=  

𝑇𝐵

(0.208)𝑏3
 

(5b.2.12) 

𝑇𝐵 = 0.208𝑏3𝜏𝐵 
(5b.2.13) 

𝜙𝐵 =
𝑇𝐵𝐿

𝐶2𝑎𝑏3𝐺
=

0.208 ∗ 𝑏3𝜏𝐵𝐿

0.1406 ∗ 𝑏4𝐺
=

1.4794 ∗ 𝐿𝜏𝐵

𝑏𝐺
 (5b.2.14) 

Making the ratio: 

𝜙𝐴

𝜙𝐵

=
(

𝐿𝜏𝐴

𝑟𝐺
)

(
1.4794 ∗ 𝐿𝜏𝐵

𝑏𝐺
)

= 0.676 ∗
𝑏𝜏𝐴

𝑟𝜏𝐵

≈ 0.676√𝜋 (
𝜏𝐴

𝜏𝐵

) 
(5b.2.15) 

For equal stresses, 𝜏𝐴 =  𝜏𝐵  then: 

𝜙𝐴

𝜙𝐵

= 0.676√𝜋   ≈  1.198 
(5b.2.16) 
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Exercise 5b.3 – From material to device  

We want to integrate a new composite material in an inertial sensor combining accelerometer and 
gyroscope together. We consider a cylinder rod (radius 𝑟 = 2 [µm], length 𝐿 = 4 [mm]) as the spin-axis 
of a gyroscope with a steel mass 𝑚 = 8𝜋 ∗ 10−6 [kg] at its free end. A torque 𝑇0 = 48𝜋 [µN · µm] is 
applied at the interface between the steel mass and the end of the cylinder rod.  The shear modulus is 
𝐺 = 40 [GPa]. 

The mass of the rod is neglected and the gravitation constant is 𝑔 = 10 [
m

s2]. 

 

a) Give an expression and calculate the values for the normal stresses along x, y, z of the 

cylinder rod at point A.  

b) Give an expression and calculate the value of the maximum shear stress due to the 

applied torque at point A as a function of r and 𝑻𝟎. 

c) Give an expression for the torsion angle of the cylinder rod at point A of the bar and 

calculate its value. 

d)   Calculate the maximum shear stress in the bar of the structure. 

 

 

 Figure 5b.3 | Inertial sensor combining accelerometer and gyroscope. 

 

Solution – 5b.3 

a) Give an expression and calculate the values for the normal stresses along x, y, z of the 
cylinder rod at point A. 

σx = 0,     σy = 0       (5b.3.1) 

𝜎𝑧 =
𝑚 ∗ 𝑔

𝐴
=

(8𝜋 ∗ 10−6 [kg]) (10 [
m
𝑠2])

𝜋(2 ∗ 10−6[𝑚])2
= 20 [MPa] (5b.3.2) 

b) Give an expression and calculate the value of the maximum shear stress due to the applied 

torque at point A as a function of r and 𝑻𝟎. 

𝜏𝑦𝑧 =
Tintr

Ip

 (5b.3.3) 

𝑇𝑖𝑛𝑡 = −T0 (5b.3.4) 

Massm Gravity

x y
z

support

L = 4 mm

O

A

R
o

d
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𝐼𝑝 =
πr4

2
 (5b.3.5) 

𝜏𝑦𝑧,𝑚𝑎𝑥 = −
2T0

πr3
= −12 MPa (5b.3.6) 

c) Give an expression for the torsion angle of the cylinder rod at point A of the bar and calculate 

its value. 

𝜙 = −
2T0L

πGr4
=  −0.6 rad =  −34.4° (5b.3.7) 

 

d) Calculate the maximum shear stress in the bar of the structure. 

   
𝜎𝑧 = 20 [MPa] and  𝜏𝑦𝑧 =  −12 MPa 

(5b.3.8) 

 

In general (not taking into account the signs of the stresses), the stress state at the 
surface the bar can be represented using a 2D element in the plane y,z as shown 
below. 

 

 

The maximum shear stress is given by a combination of the normal and shear 
stresses applying this relationship: 
 

 

 

𝜏𝑀𝑎𝑥
𝑚𝑖𝑛

= ±√(
𝜎𝑦 − 𝜎𝑧

2
)

2

+ 𝜏𝑦𝑧
2  (5b.3.9) 

𝜏𝑀𝑎𝑥
𝑚𝑖𝑛

= ±√(
0 − 20

2
)

2

+ 122 = ±√100 + 144 = ±15.6 [MPa]    (5b.3.10) 

  

z

y

yz
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Exercise 5b.4 – MEMS Torque Magnetometer 

A “Torque magnetometer” is a MEMS device used to measure the magnetic properties of a material 
with great sensitivity. These devices typically consist of a cantilever beam with a small amount of test 
material attached to the unclamped end. An external magnetic field is used to exert a torque on the 
sample, twisting the end of the beam. This deflection is then measured and, by repeating this with 
different conditions, the magnetic properties of the sample can be empirically determined with great 
sensitivity. 

 

The magnetometer can be modelled simply with a cylindrical beam where the test material 
attached to the end as shown in Figure 5b.4. A uniform magnetic field is introduced to the sample with 
field strength 𝑩, which we assume is applied at point R. We assume the two materials are firmly attached 
and have the same cross section. We also assume the beam material is completely non-magnetic with 
𝐺𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 = 50 GPa, while the shear modulus of the sample material is 𝐺𝑆𝑎𝑚𝑝𝑙𝑒 = 25 GPa. 

 

Recall that the magnetic torque on the beam is: 

𝑻𝒎𝒂𝒈 = 𝒎 × 𝑩 

Where B is the magnetic field and m is the magnetic moment of the sample. 

 

For a uniform magnetic field 𝐵 = 20 T, we measure a twist angle at the end of the sample of 2 

degrees. What is the magnetic moment of the sample? 

 

 

Figure 5b.4 | Simplified model of a MEMS Torque Magnetometer as a cylinder. 

 

Solution – 5b.4 

Find the magnetic moment, m: 

You have first to consider the polar moment of inertia, 𝐼𝑝. It is only depending on the geometry of the 

bar. We call d the diameter of the bar. 
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𝐼𝑝 =
𝜋𝑑4

32
   (5b.4.1) 

Then, we calculate the separate stiffness, k, of the two portions of the bar. Calling L the length of the 

bar, it gives us for each portion: 

𝑘𝑥 = 𝐺𝑥

𝐼𝑝

𝐿𝑥

   (5b.4.2) 

The equivalent stiffness of serial portions is the indirect sum of the respective stiffness of each portion 

of the bar. Therefore: 

𝑘𝑒𝑞 = (𝑘𝑃𝑄
−1 + 𝑘𝑄𝑅

−1)
−1

 (5b.4.3) 

𝑘𝑃𝑄 = 𝐺𝑃𝑄

𝐼𝑝

𝐿𝑃𝑄
= 7.85 ∙ 10−6  

𝑘𝑄𝑅 = 𝐺𝑄𝑅

𝐼𝑝

𝐿𝑄𝑅
= 1.96 ∙ 10−5 

𝑘𝑒𝑞 = 5.61 ∙ 10−6  

To conclude, we obtain the torque, T, with respect to the torsion angle, 𝜙: 

𝑇 = 𝑘𝑒𝑞 ∗ 𝜙 (5b.4.4) 

𝑇 = (5.61 ∙ 10−6 ) ∗ (2𝑑𝑒𝑔 ∗
𝜋

180
) = 1.958 ∙ 10−7 𝑁 ∙ m   

Substituting, the numerical application gives: 

𝑇 = 𝑚 × 𝐵  

𝑚 = 𝑇/𝐵  

𝑚 =  9.79 ∙ 10−9  𝑁 ∙ m/T   

 
 

(5b.4.5) 

  



Danick Briand Solutions CdM1 Série 5b 
 

 

Conception de Mécanismes I - 2024 Page 9 of 11 © EPFL-STI-SMT 

Exercise 5b.5 – Torsion of a coated tube  

We consider a circular hollow tube coated with a hard material, as shown in Figure 5b.5. A Torque, 
T, is applied at its right end side at distance L. The tube is composed of a Silicon Nitride (SiN) coating 
and a Steel inner part. The material properties are: for the Silicon Nitride coating 𝐸𝑆𝑖𝑁 = 175 GPa and 
𝜈𝑆𝑖𝑁 = 0.25, and for the Steel part 𝐸𝑆𝑡𝑒𝑒𝑙 = 208 GPa and 𝜈𝑆𝑡𝑒𝑒𝑙 = 0.30. The inner radius, R1, is 0.03 m, the 
thickness of the Steel part (𝑡𝑆𝑡𝑒𝑒𝑙 = R2 – R1 = 90 mm), the thickness of the Silicon Nitride coating (𝑡𝑆𝑖𝑁 =
R3 – R2 = 2 mm) and the length of the tube is 𝐿 = 1 m. 

 

a) Calculate the numerical value of the shear moduli for both parts (Steel and SiN). 
b) Calculate the numerical value of the polar moments of inertia for both parts (Steel and 

SiN). 
c) The yield shear stresses are 𝝉𝒚𝒊𝒆𝒍𝒅,𝑺𝒕𝒆𝒆𝒍 = 𝟐𝟐𝟎 𝐌𝐏𝐚 and 𝝉𝒚𝒊𝒆𝒍𝒅,𝑺𝒊𝑵 = 𝟒𝟏𝟎 𝐌𝐏𝐚. With a safety 

factor (SF) of 2, calculate the angle of twist, 𝝓, in radians (rad), for both materials. 
Indicate which part of the coated tube fails first. 

d) We want now to deform the whole tube with an angle of twist, 𝝓 = 𝟎. 𝟎𝟐𝟕𝟓 𝐫𝐚𝐝. 
Considering a safety factor (SF) of 2, and that the inner radius, R1, and SiN thickness 
remain the same: 

i. Calculate the value of the new maximum thickness of the Steel tube before failure 
occurs. 

ii. For the new dimensions of the coated tube, plot the graph of torsional shear stress 
as function of the radius, 𝒓, for x = L. Indicate in your plot the stress values at the 
inner and outer edges of the Steel and SiN parts. 

 

 

Figure 5b.5 | Schematic of the coated tube (The drawing is not to scale). 

 

Solution – 5b.5 

a) Determine the shear moduli 

Shear modulus, Steel 

𝐺𝑆𝑡𝑒𝑒𝑙 =
𝐸𝑆𝑡𝑒𝑒𝑙

2(1 + 𝜈𝑆𝑡𝑒𝑒𝑙)
=

208 ∙ 109

2(1 + 0.3)
= 80 GPa 

Shear modulus, Silicon nitride (SiN) 

𝐺𝑆𝑖𝑁 =
𝐸𝑆𝑖𝑁

2(1 + 𝜈𝑆𝑖𝑁)
=

175 ∙ 109

2(1 + 0.25)
= 70 GPa 

b) Determine the polar moments 
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𝐼𝑆𝑡𝑒𝑒𝑙 =
𝜋(𝑅2

4 − 𝑅1
4)

2
= 3.2445 ∙ 10−4   m4 

𝐼𝑆𝑖𝑁 =
𝜋(𝑅3

4 − 𝑅2
4)

2
= 0.2226 ∙ 10−4  m4 

c) Calculate the angle of twist in radians (rad) at which the composite fails 

Necessary formulation 

𝜏(𝑟) = G𝛾(𝑟) 

𝛾(𝑟) =
ϕ𝑟

L
 

𝜙𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =
𝜏maxL

2GnRn
 

Angular of twist of Steel part at failure 

𝜙𝑆𝑡𝑒𝑒𝑙 =
1

𝑆𝐹
∗

𝜏𝑆𝑡𝑒𝑒𝑙𝐿

𝐺𝑆𝑡𝑒𝑒𝑙𝑅2
= 0.5 ∗

220 ∙ 106

80 ∙ 109 ∗ 0.12
= 0.0115 rad 

Angle of twist of SiN part at failure 

𝜙𝑆𝑖𝑁 =
1

𝑆𝐹
∗

𝜏𝑆𝑖𝑁𝐿

𝐺𝑆𝑖𝑁𝑅3
= 0.5 ∗

410 ∙ 106

70 ∙ 109 ∗ 0.122
= 0.0240 rad 

The max angle before the failure of the coated tube is in the steel tube at an angle of 0.0115 rad. 

 

d) Under an angle of twist, 𝝓, of 0.0275 rad. safety factor (SF) of 2, and fixed inner radius (𝐑𝟏) 

and thickness of Silicone Nitride (𝐭𝐒𝐢𝐍). Find the following: 

i. The new thickness of the Steel tube to avoid failure 

The thickness of the steel tube has to be adapted in order to allow the structure to reach the desired 

angular deformation. 

Previous formula can be used but now the angle of twist has to be fixed and the only variable will be the 

radius R2
′ . 

𝑅2
′ =

1

𝑆𝐹

𝜏𝑆𝑡𝑒𝑒𝑙𝐿

𝐺𝑆𝑡𝑒𝑒𝑙𝜙
= 0.5 ∗

220 ∙ 106

80 ∙ 109 ∗ 0.0275
= 0.05 m 

 

So the thickness of steel tube to avoid failure at an angle of 0.0275 rad is equal to 

 

𝑡𝑆𝑡𝑒𝑒𝑙 = 𝑅2
′ − 𝑅1 = 0.05 − 0.03 = 0.02 m 

 

ii. The stress values and sketch of stress profile 

With the new dimensions known, we can now calculate the new stress values at the interfaces. The 

safety factor can now be ignored, as we’re looking at the actual stress profiles in the bar. 

𝜏𝑆𝑡𝑒𝑒𝑙(𝑅1) =
𝜙𝑆𝑡𝑒𝑒𝑙 ∗ 𝐺𝑆𝑡𝑒𝑒𝑙 ∗ 𝑅1

𝐿
=

0.0275 ∗ 80 ∙ 109 ∗ 0.03

1
= 66.0 MPa 

𝜏𝑆𝑖𝑁(𝑅2
′ ) =

𝜙𝑆𝑖𝑁 ∗ 𝐺𝑆𝑖𝑁 ∗ 𝑅2
′

𝐿
=

0.0275 ∗ 70 ∙ 109 ∗ 0.05

1
= 96.25 MPa 

𝜏𝑆𝑖𝑁(𝑅3
′ ) =

𝜙𝑆𝑖𝑁 ∗ 𝐺𝑆𝑖𝑁 ∗ 𝑅3
′

𝐿
=

0.0275 ∗ 70 ∙ 109 ∗ 0.052

1
= 100.1 MPa 
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The value of the stress at R2 was given as 220 MPa, but since we overestimated by a factor two, the actual 

stress at this point will be 110 MPa 

When we draw the stress profile it looks like the figure below 

 

 

Two parts are important here. 

- First, there is an offset in the stress between the less rigid and more rigid materials at 𝐑𝟐
′ . 

As well as an offset of the stress at R1, due to the hole. 

- Secondly, the slope of the shear in the SiN material is less steep than that of the Steel part, 

as it has a smaller modulus of rigidity, G, than Steel. So under the same strain, it will not undergo 

the same amount of stress, since we are still in the linear regime and it behaves Hookean. 

(𝐺𝑆𝑡𝑒𝑒𝑙 = 80 GPa, 𝐺𝑆𝑖𝑁 = 70 GPa) 


